Imbalance-p @en

Half of all cropland could be returned to nature with no fall in production

Half of the world’s cropland could be used for other purposes if agricultural efficiency were improved through high-yield farming. That would mean making 576 million hectares of land available, more than 10 times the area of Spain (approximately 50 million hectares).

Agricultural efficiency Cropland efficiency High-yield farming Imbalance-p @en International institute for applied systems analysis Josep peñuelas @en Nature sustainability @en

Tropical forests are the terrestrial plant ecosystems to which climate change poses the greatest risk

A study involving CREAF's Josep Peñuelas has identified the optimal temperatures of terrestrial plant ecosystems throughout the world and indicates the size of their margin for adaptation to warming. Outside that margin, ecosystem growth slows sharply.

Climate change Ecophisiology Forestry dinamics Forests Geu @en Imbalance-p @en Josep peñuelas @en Temperature Tropical @en Tropical forest

The greening of the earth is reaching its limit

A new study led by Josep Peñuelas and published in Nature Ecology and Evolution reveals that CO2 abundance in the atmosphere no longer has a powerful fertilizing effect on vegetation. The greening that has been observed in recent years is slowing and this will cause CO2 levels in the atmosphere to rise, thus increasing temperatures and leading to increasingly severe changes in climate.

Carbon Carbon stocks Climate change Co2 @en Co2 uptake Cop21 @en Geu @en Greening @en Imbalance-p @en Jofre carnicer @en Jordi sardans @en Josep peñuelas @en Marcos fernandez-martinez @en Nature ecology & evolution @en Summer Temperatures @en

Close to 50% of phosphorus emitted to the atmosphere is a result of human activities

According to the study in which CREAF participated, China contributes 43% of this amount. For decades it had been thought that human activities were responsible for only around 5% of atmospherically-circulating phosphorus. More phosphorus in the air means more phosphors deposited on the ground. This can boost plant growth and the capacity to sequester atmospheric CO2; for that reason human activities may be altering the phosphorus and carbon cycles to a degree which was previously unknown

Biogeochemical cycles Erc @en Geu @en Imbalance-p @en Josep peñuelas @en Nutrient cycle Phosphorus

Nutrient-rich forests absorb more carbon

The study, published in the journal Nature Climate Change, showed that forests growing in fertile soils with ample nutrients are able to sequester about 30% of the carbon that they take up during photosynthesis. In contrast, forests growing in nutrient-poor soils may retain only 6% of that carbon. The rest is returned to the atmosphere as respiration.

Biogeochemical cycles Captació co2 Cicles biogeoquímics Co2 @en Co2 uptake Edm@en Embornal Forest Geu @en Imbalance-p @en Marcos fernandez-martinez Marcos fernandez-martinez @en Nutrient cycle Nutrients Peñuelas @en